715 research outputs found

    Search for neutrinoless double beta decay with the NEMO-3 detector : First results

    Full text link
    The NEMO 3 detector has been running since February 2003 with several double beta emitters. New results are given for Mo100, Se82, Nd150, Zr96, Ca48. The NEMO 3 detector properties are presented for tracking reconstruction, identification of particles, energy measurement. Angular distributions for one and two electrons are produced as well as energy spectra. It is deduced new values of half lives for the double beta emitters and stronger limits on the effective neutrino mass using data on Mo100 and Se82

    Health-related quality of life in the WA HIV Cohort: 2008

    Get PDF
    Quality of life (QOL) is an important outcome of HIV treatment and a priority in the management of HIV. A new Patient-Reported Outcomes (PRO) questionnaire to measure the QOL in people living with HIV/AIDS (PLWHA) from different cultures and language groups has been developed. The instrument, PROQOL-HIV, has undergone psychometric validation in 791 individuals from 8 countries including 99 people from the WA HIV Cohort Study

    On the attenuation coefficient of monomode periodic waveguides

    Get PDF
    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient alpha = -/L. In this letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result that contradicts common beliefs and experimental practices aiming at measuring alpha is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviours

    Indoor Air Quality Forecast in Shared Spaces– Predictive Models and Adaptive Design Proposals

    Get PDF
    The high concentration of air pollutants in indoor environments can have a remarkable adverse impact on health and well-being, cognitive performance and productivity. Indoor air pollutants are especially problematic in naturally ventilated shared spaces such as classrooms and meeting rooms, where human-generated pollutants can rise rapidly. When the inhabitants are exposed to indoor air pollution, recovering from its ramifications takes time and harms their well-being in the long run. In our approach, we seek to predict and prevent such hazardous situations instead of rectifying them after they happen. The prediction and prevention are accomplished through algorithms that can learn from the evolution of air pollutants and other variables to indicate whether or not a high level of pollution is forecast. We present two AI-enabled methods, one providing the forecast for the concentration level of carbon dioxide in the next 5 and 20 minutes with 86% and 92% accuracy. The second algorithm provides predictive indicators about how the CO2 level will evolve during the upcoming session (meeting or a course) before the session starts. We will discuss design implications and present design proposals on how these methods can inform interactive solutions for preventing high concentrations of indoor air pollutants

    Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs

    Full text link
    A theoretical study of photonic bands for one-dimensional (1D) lattices embedded in planar waveguides with strong refractive index contrast is presented. The approach relies on expanding the electromagnetic field on the basis of guided modes of an effective waveguide, and on treating the coupling to radiative modes by perturbation theory. Photonic mode dispersion, gap maps, and intrinsic diffraction losses of quasi-guided modes are calculated for the case of self-standing membranes as well as for Silicon-on-Insulator structures. Photonic band gaps in a waveguide are found to depend strongly on the core thickness and on polarization, so that the gaps for transverse electric and transverse magnetic modes most often do not overlap. Radiative losses of quasi-guided modes above the light line depend in a nontrivial way on structure parameters, mode index and wavevector. The results of this study may be useful for the design of integrated 1D photonic structures with low radiative losses.Comment: 9 pages, 8 figures, submitted to Physical Review

    Museum DNA reveals the demographic history of the endangered Seychelles warbler

    Get PDF
    The importance of evolutionary conservation – how understanding evolutionary forces can help guide conservation decisions – is widely recognized. However, the historical demography of many endangered species is unknown, despite the fact that this can have important implications for contemporary ecological processes and for extinction risk. Here, we reconstruct the population history of the Seychelles warbler (Acrocephalus sechellensis) – an ecological model species. By the 1960s, this species was on the brink of extinction, but its previous history is unknown. We used DNA samples from contemporary and museum specimens spanning 140 years to reconstruct bottleneck history. We found a 25% reduction in genetic diversity between museum and contemporary populations, and strong genetic structure. Simulations indicate that the Seychelles warbler was bottlenecked from a large population, with an ancestral Ne of several thousands falling to <50 within the last century. Such a rapid decline, due to anthropogenic factors, has important implications for extinction risk in the Seychelles warbler, and our results will inform conservation practices. Reconstructing the population history of this species also allows us to better understand patterns of genetic diversity, inbreeding and promiscuity in the contemporary populations. Our approaches can be applied across species to test ecological hypotheses and inform conservation

    Ac conductivity and dielectric properties of CuFe1−xCrxO2 : Mg delafossite

    Get PDF
    The electrical and dielectric properties of CuFe(1−x)Cr(x)O(2) (0 ≀ x ≀ 1) powders, doped with 3% of Mg and prepared by solid-state reaction, were studied by broadband dielectric spectroscopy in the temperature range from −100 to 150 °C. The frequency-dependent electrical and dielectric data have been discussed in the framework of a power law conductivity and complex impedance and dielectric modulus. At room temperature, the ac conductivity behaviour is characteristic of the charge transport in CuFe1−xCrxO2 powders. The substitution of Fe3+ by Cr3+ results in an increase in dc conductivity and a decrease in the Cu+–Cu+ distance. Dc conductivity, characteristic onset frequency and Havriliak–Negami characteristics relaxation times are thermally activated above −40 °C for x = 0.835. The associated activation energies obtained from dc and ac conductivity and from impedance and modulus losses are similar and show that CuFe1−xCrxO2 delafossite powders satisfy the BNN relation. Dc and ac conductivities have the same transport mechanism, namely thermally activated nearest neighbour hopping and tunnelling hopping above and below −40 °C, respectively

    Search for proton decay in the Frejus experiment

    Get PDF
    The status of the Frejus experiment and the preliminary results obtained in the search for nucleon decay are discussed. A modular, fine grain tracking calorimeter was installed in the Frejus laboratory in the period extending from October 1983 to May 1985. The 3300 cubic meter underground laboratory, located in the center of the Frejus tunnel in the Alps, is covered in the vertical direction by 1600 m of rocks (4400 m w.e.). The average number of atmospheric muons in the lab is 4.2 square meters per day. The 912 ton detector is made of 114 modules, each one including eight flash chamber and one Geiger vertical planes of (6 x 6) square meters dimensions. The flash chamber (and Geiger) planes are alternatively crossed to provide a 90 deg. stereo reconstruction. No candidate for the nucleon decay into charged lepton is found in the first sample of events

    Human and machine collaboration in creative design

    Get PDF
    Establishing that machines cannot be creative in the same way as humans, we propose a computational model which allows human and machine to collaborate on creative design in a social structure similar to human-human collaboration. We then discuss specific architectural problems associated with the design of such an interactive, collaborative, and intelligent syste

    Enhancement of spatial coherence by surface plasmons

    Get PDF
    We report on a method to generate a stationary interference pattern from two independent optical sources, each illuminating a single slit in Young's interference experiment. The pattern arises as a result of the action of surface plasmons traveling between subwavelength slits milled in a metal film. The visibility of the interference pattern can be manipulated by tuning the wavelength of one of the optical sources. © 2007 Optical. Society of America
    • 

    corecore